Anti-Derivative Word Problems

Example

1. I throw a ball up into the air with an initial velocity of $10 \mathrm{~m} / \mathrm{s}$. Assuming that gravity produces a constant acceleration of $-10 \mathrm{~m} / \mathrm{s}^{2}$, how long will it take for the ball to come back to the ground?

Problems

2. An airplane starts accelerating at a rate of $4 \mathrm{~m} / \mathrm{s}^{2}$. After 20 seconds, it finally lifts off the ground. How far did it travel before takeoff?
3. A ball is dropped from a height of 500 m . Assuming gravity is $-10 \mathrm{~m} / \mathrm{s}^{2}$, how long does it take for the ball to hit the ground?
4. A biker is initially traveling $45 \mathrm{~m} / \mathrm{s}$ and starts braking with a constant deceleration of $9 \mathrm{~m} / \mathrm{s}^{2}$. How far does he go before he comes to a complete stop?
5. In t months from now, the population of Berkeley will be changing at a rate of $25+10 t^{2 / 3}$. If the current population is 2000 , what is the population 8 months from now?
6. In t seconds, a bacteria population will be increasing at a rate of $50 e^{5 t}$. If the initial bacteria population is 200 , what will it be in 10 seconds?
7. An atom is losing energy at a rate of $10 \mathrm{~J} / \mathrm{s}$. If the atom initially has 100 J worth of energy, how much energy will it have after 5 seconds?

Riemann Sums

Example

8. Using limits, find the integral of x^{2} from 0 to 3 .
